If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+4x-159=0
a = 1; b = 4; c = -159;
Δ = b2-4ac
Δ = 42-4·1·(-159)
Δ = 652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{652}=\sqrt{4*163}=\sqrt{4}*\sqrt{163}=2\sqrt{163}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{163}}{2*1}=\frac{-4-2\sqrt{163}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{163}}{2*1}=\frac{-4+2\sqrt{163}}{2} $
| -10(n+3)=0.50(24-14n) | | |3m-9|=18 | | 42x+4+43x+1=180 | | 9x+9=11x-2x-9 | | 7/(m+8)=2/m | | (3x-5)=(7x+5) | | 14m=18m+12m | | –2x–16=2 | | 3(1.5y-6)=12 | | -16+16w=2(8w-10)+4 | | -9xX=81 | | 11x+13+13x+1=180 | | 4m+8=-2m-4 | | 2x+5-4x+10=35 | | 4n+1=4(n+1) | | 11x+13+13x+1=0 | | 10+5h=14+3h | | 3(0.5y-6)=13 | | 2=-(n-2)+n | | t/2+5=12 | | 88=3-5(-2x-5) | | -24p=-774 | | 0.2x-1=-0,4 | | 5(3x+7)=11x+30+4x | | 5(U+5)=7u+41 | | 1/2x+12=8× | | x2-484=0 | | -11x+60=-28-7x | | x-100=47 | | 1/3x-3=29 | | –3+9j=10j | | 5d+7+6d-4=180 |